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ON THE BUCKLING BEHAVIOUR OF SHALLOW
SPHERICAL CAPS UNDER A UNIFORM PRESSURE LOAD

S. C. TILLMAN

Civil Engineering Department, University College, Gower Street, London

Abstract-Results are presented of a theoretical and experimental investigation into the elastic buckling of
clamped shallow spherical caps under a uniform pressure. Attention has been focussed on low values of the
geometric parameter A. for which the symmetrical and first two asymmetrical deformation modes are valid. In
the symmetrical case the results from nominally perfect shells and shells with known size of imperfection show
excellent agreement with existing theory. In the asymmetrical case the theoretical work bas predicted the insta­
bility of both modes after the bifurcation point and also the non-existence ofa transition path between them. The
experimental results however indicate a critical dependence between the final buckling loads of shells of similar ;.
and the rise to base radius ratio. Initial asymmetrical imperfections also seem to be important.

INTRODUCTION

IN THIS paper the asymmetrical post-bifurcation behaviour of a clamped shallow spherical
cap under a uniform pressure load is investigated both theoretically and experimentally.
The investigation was initiated in an attempt to explain the scatter of existing experimental
buckling loads about those predicted by shallow shell theory.

The geometry of a shallow cap can be represented as in Fig. 1. Here the rise height,
base radius, radius of curvature of the mid-surface and thickness of the shell are denoted
by H, a, Rand t respectively. The horizontal meridional, horizontal tangential and vertical
displacements of a point on the shell with polar coordinates (r, 0) are denoted by U, V
and W respectively. It is found from shallow shell theory (e.g. [3]) that the geometry of the
shallow cap can be represented by a single parameter A. where

A = 2[3(1- V
2)]t(~) t

and v is Poisson's ratio.
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FIG. 1. Geometry of clamped shallow spherical cap.

37



38 S. C. TILLMAN

The load-deformation relationship of the clamped cap quickly becomes non-linear
after the initial application of the applied pressure and for sufficiently low values of this
pressure the deformations are always axisymmetric. Furthermore, if it is assumed that the
deformations always remain axisymmetric, it is found that the load reaches a limiting value
Ps (point A in Fig. 2) where the shell becomes unstable and "snaps" at constant pressure to
point B on the loading path. The critical pressure Ps has been theoretically investigated by
Budiansky [3] for a wide range of A. and his result is shown in Fig. 3. Here P is the actual
snapping pressure and Po the buckling pressure of the complete sphere ofwhich the clamped
cap forms part. Po is given by

where E is Young's modulus.
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FIG. 2. Schematic equilibrium paths for a shallow clamped cap.
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A similar result to Budiansky has been obtained by Weinitschke [14], Thurston [12J
and Archer [lJ.

It was shown theoretically by Huang [5] that if asymmetrical deformations were con­
sidered it was possible for shells of A. '> 5·5 to buckle at pressures lower than Ps ; that is the
shell initially deforms symmetrically until it reaches point C (Fig. 2) at a pressure PA where
it bifurcates into an asymmetrical deformation mode. Huang's results for the bifurcation
pressures PA for a wide range of A. are shown in Fig. 3. Here the labels n = 1, n = 2, etc., on
Huang's curves represent one, two, etc., waves in the circumferential direction of the shell.
Huang's approach to the problem was to solve Marguerre's [9J non-linear shell equations
by finite differences. The stability ofthe subsequent post-bifurcation path was not included
in his analysis. A similar result to Huang has been obtained by Archer and Familli [2J
and for low values of A. by Parmerter [10].

The comparison of the theoretical and experimental results has been carried out on the
basis of the shallowness criterion obtained by Reissner [llJ from an order of magnitude
analysis of the equations governing the symmetrical deformation behaviour of the shallow
shell. He concluded that all the test shells should conform to the criterion

H 1-<­a 6

if a valid comparison was to be made.
Some recent experiments on very accurate test shells have been made by Loo and Evan­

Iwanowski [8J, Parmerter [10J and Krenzke and Kiernan [7J and their results for the
observed buckling loads are shown plotted in Fig. 3. All of these test shells came within the
Reissner criterion. Deflection measurements were made across a diameter of the shells
before buckling occurred by the workers in [8J and [10J and a variation in the symmetrically
deformed shape of the shell with A. was observed. No attempt was made to measure asym­
metrical displacements. All of the above experimental workers observed that the final
buckled configuration of each shell was always a single edge dimple (i.e. n = 1).

In the present paper the stability of the first two asymmetrical modes after the Huang
bifurcation point is investigated theoretically on the basis of Marguerre's [9J non-linear
shallow shell equations. Two modes only are considered in an attempt to reduce the amount
of computational work involved. An approximate solution is found by using the Ritz­
Galerkin method. Results are also presented of a detailed experimental investigation of the
asymmetrical buckling of model shallow clamped caps in which asymmetrical deformation
modes are detected and measured for the first time. These results together with the present
theoretical results casts doubt on the validity of Reissner's [l1J shallowness limit being
carried on over into the region of asymmetrical deformation; something which has been
the practice of all previous experimental workers. The experiments are carried on into the
region of symmetrical behaviour and the results obtained for the snapping loads of nomin­
ally perfect and imperfect shells are compared with existing theory.

THEORY

Following previous workers [5, 1O,2J the analysis is made via Marguerre's [9J non­
linear shell equations. By using these equations the results will only be applicable to shells
which are both thin and shallow. The "shallowness limit" assumed by workers for the
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spherical cap is usually Ria < i or, sometimes, Ria < i. It will be shown later that, where
asymmetrical displacements are concerned, these values may be optimistic.

The following notation is used

o ,
-( ) = ( )or

o
oO( ) = (').

Higher and cross derivations are indicated by multiple indices. For equilibrium of the in­
plane forces in the shell

(rNr)'+Nr9 -N9 = 0

(rNr9)' +N9 +Nr9 = 0

(1)

(2)

where N" N9 are in the in-plane forces per unit length in the meridional and circumferential
directions respectively and N r9 is the corresponding shear force. Equations (1) and (2) can
be satisfied by a stress function F where

1 1 ..
N = -F'+-F

r r r 2

N 9 = F"

The corresponding membrane strains are given by

1
e = -(N -vNn)

r tE r •

The non-linear displacement relations can be expressed by

e = U'+~W'+~(W')2
r R 2

v Ii 1(1.)2e9 = -+-+--W
r r 2 r

U V 1 r .
Yr9 = ---+ V'+-WW'+-w.

r r r R

Introducing the quantity

r
x=­

a

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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and the notation

:) )=( )*.

Marguerre's shallow shell equations can be written as

DV4 W+~[~F*W* +~FW-!F*W** _!F** W*
a4 x 2 x4 x x

1 . . 1· . 2 . 2. J 2H[ F* FJ--F**W--FW**--F*W--FW* -- F**+-+- -P = 0
x 2 x 2 x 3 x 3 a4 x x 2

a
4

V4F _ [~(W*)2 +~(W)2 _!W** W* - ~W** W-
Et x2 x4

X x2

2 ] [ W* WJ--W*W +2H W**+-+- = 0
x 3

X x 2

where P is the applied pressure,

1[ 2 1 1 4 2 2 1 JV4
( ) = - ( )****+-( )***--( )**+-( )*+-("")--0*+-("")**+-("""')

a4 x x 2 x 3 x4 x 3 x 2 x4

and

(13)

(14)

(15)

Et3

D=~--=
12(1- v2

)

Equation (13) is the out of plane equilibrium equation and (14) the compatibility equation
for a deformed shell element.

Boundary conditions
Since the shell is clamped along a parallel circle

u = v= W= W' = 0 when r = a. (16)

From these conditions it follows from the strain-displacement relations that

and BO = O}
when

aBe-Br-Yro = 0
r = a. (17)

(18)

Furthermore at the centre of the shell we must have

Wfinite}
when r = O.

All stresses finite

The conditions (17) can be expressed in terms of the stress function F by means of (3H8)
and (12) as

3F**-F*-F = O}
.... when x = 1

3F***-2F*+7F*-9F = 0

here and henceforth the value of v has been taken as t.

(19)
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Using equations (3H5) and (12) the conditions (18) can be expressed as

1 1 ..
-F*+--F
xa 2 x 2a2

finite when x = O.

-~[~pJ*
a xa

(20)

(21a, b, c)

(22a, b)

Reduction of the equations
Because of the complexity of Marguerre's equations it was decided to obtain an approx­

imate solution of them by the Ritz-Galerkin method. The method consists ofassuming the
deflected shape of the shell as a linear combination ofsuitably chosen functions each satisfy­
ing the geometrical boundary conditions of the problem. Each function is multiplied by a
deflection parameter which is then adjusted by Galerkin's method to optimize the solution
over the region of interest.

Three functions are chosen to represent the change in the symmetrically deformed shape
of the shell with A. (see for example experimental results in reference [10]) and are as follows

WI = (l-x
2? j

W2 = x2(I_x 2 )2

W3 = x2(l- X 2)2(l- 4x2 ).

With this number of symmetrical terms used the results should be valid for A. <: 8. The
n = 1 and n = 2 asymmetrical mode functions are chosen to represent closely the shapes
deduced by Huang [5]. They are (for the n = 1 and n = 2 modes respectively):

W4 = x(l- X
2

)2 cos 8 }

Ws = x 2(1-X 2)2 cos 28

All of the above shapes satisfy the necessary geometrical boundary conditions of the
problem. When each deflection function is multiplied by a free parameter the complete
deflection function is formed from their sum as :

W = (l-X2)2(A +Bx2 +Cx2(1-4x2 )+Jx cos 8+Kx2 cos 28). (23)

Determination of the stress function
The deflection function (23) is now substituted into (14) and an expression for F is

obtained in the form

V4 F = f(x, 8).

By expressing F as an infinite cosine series of the form

00

F = L Fs cos s8
s=o

(24)
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and substituting into (15) a further expression for V4F is obtained as

V 4 F = ~ ~ [F**** +~F***-(1-2s
2

) F**
a

4 .~o· x • x 2
'

(1+2s2)F* S2(S2_4) ] ()+ 3 • + 4 F. cos s .
x x

(25)

A comparison of the terms in (24) and (25) yields an infinite set of fourth order differential
equations for determining the coefficients F•. Each of these equations can be integrated
without difficulty (the integrands being simple polynomials in x) and yield four constants
which are chosen to satisfy the stress boundary conditions (19) and (20). It was found that
for s > 4 the coefficient F. must become identically zero if these conditions were to be
satisfied and hence an exact solution to the compatibility equation was obtained.

Reduction to a set of non-linear algebraic equations

Substituting F into (13) and applying Galerkin's method (i.e. multiplying through by the
deflection functions (21) and (22), in turn, and integrating over the range of definition of the
variables) leads to five non-linear algebraic equations for determining the deflection para­
meters for any assumed value of the load. These equations can be non-dimensionalized by
introducing

A B
Ad = H,Bd = H,etc.

Po _ 32EH3t P
o - A,2a4 q = Po'

These final equations are not written down here explicitly because of their length.
However full details can be found in [13]. The equations governing either symmetrical,
asymmetrical bifurcation or asymmetrical post-bifurcation behaviour can be obtained
from them simply by equating the unwanted deflection parameters to zero. In the bifurca­
tion problem for example the equations reduce to three which describe the symmetrical
behaviour of the cap together with two side conditions which must be satisfied if an asym­
metrical bifurcation point is to exist on the symmetrical loading path. For the post-bifurca­
tion behaviour case four equations must be solved together with a side condition which
must be satisfied if a transition path bifurcation point is to exist. (Details of these transition
points are given in the next section.)

Each set of equations were solved numerically on a computer, using the generalized
Newton-Raphson iterative algorithm described by Householder [4], without difficulty.

Theoretical results

The results obtained for the snapping and bifurcation pressures for varying Aare shown
in Fig. 4. A comparison has been made here with the theories of Huang [5J and Budiansky
[3].

The results for the post-bifurcation paths of the n = 1 and n = 2 asymmetrical
modes for A = 6 are shown in Fig. 5. Both paths have been followed some way into the
asymmetrical region and in the case n = 2 the path has been followed until it rejoins the
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FIG. 4. Present theoretical snapping and bifurcation pressures.

symmetrical deformation curve (not shown in the figure). The quantity v., in this Figure is
defined later.

A search was made for a transition path joining the n = 2 to the n = 1 post-bifurcation
paths in an attempt to explain why the test shell always favours the n = 1 pattern at failure.
The line of argument followed was that somewhere along an n = 2 post-bifurcation path
it might be possible for another bifurcation to occur which would be into a mode made up of
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FIG. 5. Theoretical equilibrium paths for modes n = I and n = 2 when A. = 6.
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a combination ofthe n = 1and n = 2 deformation modes. This transition path would then
join the n = 1 post-bifurcation path allowing the shell to assume its final buckled shape.
However, no such transition path bifurcation points were found.

EXPERIMENTAL METHOD
Shell specimens

Any elastic buckling test on shallow caps involves large deformations of the test
specimens and, in consequence, the possibility of yielding of the shell material. In view of
this the test shells were manufactured by vacuum pressing hot rigid-polyvinylchloride
(PVC) plastic sheet against accurately turned spherical metal moulds of the required radius.
The PVC sheet chosen had been specially developed by Imperial Chemical Industries
(I.C.!.) for vacuum forming and was capable of being considerably stretched when hot
without undue thinning. All the physical and chemical properties of this material have been
thoroughly investigated by I.C.!. and are listed in their handbook [6]. Independent checks
on the values for the elastic modulus, Poisson's ratio and creep rate were carried out in the
laboratory. These checks confirmed the handbook values and the small creep rate of
the material at room temperature. The linearity of the PVC was good up to stresses of
3500 Ib/in2

• The metal moulds were turned from duralumin in the lathe by means of a
specially designed spring loaded tool which fitted in the cross slide and followed an accurate
template of the required radius fitted in the tailstock. Details ofthis device can be obtained
from Reference [13]. The shell manufacturing procedure was to clamp a piece of the PVC
sheet over the mould and heat the latter to 100°C in an electric oven for about 30 min during
which time the sheet became soft. The air was then removed from between the mould and
the sheet by means of a vacuum pump, which forced the sheet to conform to the mould's
contours. With the vacuum maintained the mould was allowed to cool to room temperature.
Subsequent tests showed that the shells produced were of good profile (maximum measured
deviation was +2 %over the mould radius) and thickness variation (no variations above
±2%of the mean thickness were found) and, because the load capable of being carried by
the hot sheet was virtually zero, the initial stresses induced in the material were negligible.

Loading apparatus

The rigid loading device used to test the present shells is shown schematically in Fig. 6.
The shell forms a membrane separating the two volumes of water A and B. The volume of
water A can be put under a pressure, suitable to buckle the shell, by means of the pump
which transfers water from the reservoir into the vessel. This initial pressurization is carried
out with the equalizing valve open so that A and B are connected and no load is applied to
the shell. If A and B are now isolated the shell can be displaced through a known volume by
opening the volume displacement valve. When this valve is closed a pressure differential is
set up between A and B which is equivalent to the load carried by the shell. In order to
maintain rigidity this pressure differential was measured by means of an initially calibrated
differential pressure transducer which gave a linear output over its working range of
± 5lb/in2

• The total movement ofthe measuring element over this range was only 0·0015 in.

Deformation measurements

The deflections ofprime interest were the asymmetrical deformations occurring, accord­
ing to Huang's theory, in the circumferential directions in shells of A. > 5·5. The device
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FIG. 6. Schematic diagram of the loading device.

shown in Fig. 7 was developed for this purpose. It consisted essentially of an eccentrically
placed small (t in. diameter) silver metal probe which continuously rotated over the surface
ofthe shell a small distance from it. Subsequent measurement of the resistance of the water
gap between the probe tip and the shell surface enabled both symmetrical and asym­
metrical displacements to be determined for the particular eccentric radius chosen. Each
PVC shell was coated with a molecular thin layer of silver metal by the well known "silver
mirror process" to enable it to conduct the current. (The process consists of chemically
reducing silver nitrate to silver metal and is carried out at 15°C thus ensuring the shells
are not warped by any heating effects). Since both the inside and outside surface of each
shell were covered in this process the radius of each shell would be checked optically by
using it as a concave mirror. The water gap between the shell and probe tip was included
as one arm in an A.c. resistance bridge, the modulated output of which was fed through an
amplifier and demodulator to a V.V. pen recorder which gave a continuous record on paper
strip. The output from the pressure transducer was fed via a D.C. amplifier to another pen on
the recorder. The probe was rotated continuously during each test by a small motor and each
complete revolution was also recorded on the final output. Each 0·1 cc of volume displace­
ment of each shell was also recorded on the trace by means of a manually operated switch.

Testing method

Each silvered shell was fitted into the loading device by clamping it between correctly
contoured rings. The clamping was done systematically to ensure an even pressure around
the shell boundary. With the drive shaft of the probe central over the shell the resistance
gap was set to about n in. and an initial profile scan, at zero load, was made. The shell was
then loaded continuously but very slowly until buckling occurred (the average time for
this to occur being about 4 min). The load was then removed and calibration tests were
carried out to relate the load and displacement traces recorded to actual physical quantities.

EXPER~ENTAL RESULTS

(i) Resultsfrom complete shells with A < 5·5
A total of eighteen shells of low A value were tested in the present work and three dif­

ferent values of the parameter H/a were employed. All the shells came within the shallow­
ness limit. All the tests were carried out without using the deflection probe and the load was



On the buckling behaviour of shallow spherical caps under a uniform pressure load 47

measured directly by means of a micropotentiometer. The observed post-snapping path
for shells in the range 3·8 ~ A. ~ 4·6 became more peaked as A. increased and for shells of
A. > 4·6 the path became "backwards" (Fig. 2) and could not be followed in the present rig.
For these shells ajump at constant volume into a rotationally symmetrical dimple occurred
when the critical load was reached. It is unknown if this jump was made via any asymmetri­
cal deformation. The geometry of each shell and the corresponding observed snapping
loads are shown in Table 1. A comparison of the observed snapping loads and the theory
of Budiansky is shown in Fig. 8.

TABLE 1

Shell no. R t x 103 R/a ). Snapping
in. in. loadlb/in2

847/1 18·98 46·7 0·052 3·86 2·16
847/2 18·98 46·0 0·052 3·89 2·09
847/3 18·98 46·6 0·052 3·86 2·07
830/1 18·98 32·2 0·052 4·65 0·91
830/2 18·98 32-4 0·052 4·64 0·90
830/3 18·98 30·9 0·052 4·75 0·94
830/4 18·98 31·2 0·052 4·72 0·91
830/5 18·98 30·6 0·052 4·77 0·87
830/6 18·98 28·9 0·052 4·91 0·87
830/7 18·98 27·0 0·052 4·92 0·86
830/8 18·98 27·9 0·052 5·00 0·86
825/1 18·99 24·9 0·052 5·29 0·63
825/2 18·99 24-4 0·052 5·34 0·61
825/3 18·99 23·9 0·052 5·39 0·59
C30/1 24·99 29·3 0·040 4·25 0·43
C30/2 24·99 28·1 0·040 4·34 0·41
C20/1 24·99 19·9 0·040 5·15 0·23
D30/1 13·99 31·2 0·074 5·15 1·80

In all cases the base radius a was 2·000 in. All test data was reduced
by using E = 450,000 Ib/in2 and v = 0·3 at 20·C for the P.V.c. sheet.
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(ii) Results from imperfect shells

Tests were carried out on imperfect shells of A. = 5·0. All the shells were nominally of
the same radius of curvature, mean thickness and base radius. The imperfections consisted
ofaxisymmetrical circular flats of varying diameter and the results obtained for the loading
paths for these shells are shown in Fig. 9. The dimensions of the specimens are included in
this figure. The quantity l-d is the dimensionless volume displacement and is given by

A. 2 VR

l-d = 2H na 2

where VR is the actual displaced volume of the shell.

+ 1·0 "
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FIG. 9. Experimental symmetrical equilibrium paths from imperfect shells.

Each loading line corresponds to at least two different tests obtained from nominally
identical shells. It was found that there was very close agreement between these loading
paths and this included the unexpected result from the 1 in. diameter flat. In Fig. 10 the
critical loads are compared with the theory given by Budiansky [3].

(iii) Results from shells of A. ~ 6
A total of 12 shells of A. ~ 6 were tested and two values of Hla were employed. The

geometry, etc., of these shells are shown in Table 2. The final observed buckling loads are
plotted in Fig. 8. One is struck immediately by the high buckling loads and large scatter
from the shells of Hla = 0·083. The deflection probe was used during these tests and the
probe tip was set at a distance of 1·1 in. from the shell's centre in all cases. This distance



FIG. 7. Asymmetrical deflection measuring probe.
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FIG. 11. Typical output trace obtained from shells of high Hla ratio.
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FIG. 10. Experimental snapping loads from imperfect shells compared with theory.

was chosen to correspond to Huang's prediction as to the point where maximum mode
n = 2 deformation should occur. The paper strip output obtained for each shell contained a
record of any asymmetrical deformations that occurred together with the load carried.
It was found for the shells of H/a = 0·083 that stable n = 2 asymmetrical modes always
occurred before the usual unstable jump into the single edge dimple type of failure. Three
parts of a typical load-deformation output trace from one of these shells are shown in
Fig. 11. In this figure the line rising from the bottom of the trace represents the increasing
load being carried by the shell and the line running approximately down the centre the

TABLE 2

Shell no. R t x 103 H/a ). Final
in. in. buckling

load Ib/in2

TSI 11·98 29·2 0·083 6·14 2·80
TS2 11·98 27·8 0·083 6·29 3·13
TS3 11·98 30·8 0·083 5·99 3·92
TS4 11·98 29·2 0·083 6·14 2·82
TS5 11·98 29·9 0·083 6-06 3·18
TS6 11·98 28·0 0·083 6·27 2·86
TS7 11·98 30·4 0·083 6·02 3·36
TS8 11·98 27·7 0·083 6·32 2·77
TS9 23·99 15·8 0·042 5·91 0·18
TS10 23·99 15·5 0·042 5·96 0·17
TS11 23·99 15·6 0·042 5·93 0·17
TS12 23·99 15·4 0·042 5·98 0·17

In all cases the base radius a was 2·000 in.
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circumferential profile. If the deformations are axisymmetric this line will remain essen­
tially straight but will move downwards. However, if asymmetrical deformations occur this
line will wave in sympathy with them over each revolution of the probe. The small equally
spaced marks at the top of the trace represent a complete revolution of the probe. As can
be seen as the load increases axisymmetrical deformation occur first but asymmetrical dis­
placements soon follow. Towards the end of the trace it is easy to distinguish a mode n = 2
displacement pattern; that is there are two alternate peaks and dimples per revolution
around the shell. It is clear however, that even with this mode fully developed the shell is
still carrying load as is evidenced by the still rising load line. The final buckling load is
obtained when the shell jumps into the n = 1 mode with an immediate drop in the load
carried. The maximum amplitude of all the n = 2 modes observed before the final n = 1
jump occurred was only 0·18 of the thickness. The results from this type of test on the shells
of B/a = 0·042 were negative in the sense that no asymmetrical deformations were de­
tected before the final jump into the n = 1 mode occurred. By Fourier analysing some of
the traces it was possible to obtain load-asymmetrical mode amplitude plots for several
nominally identical shells, and the results from this are shown in Fig. 12. Here the last
plotted experimental point on each curve represents the moment of jumping to the n = 1
mode.

DISCUSSION

The snapping loads observed for shells of A. < 5·5 (Fig. 8) show excellent agreement
with the theory of Budiansky [3] and the effect of the parameter B/a on the snapping loads
seems to be small. This last result is in agreement with the work of Reissner [11]. The high

1'0

0-8 (;rr~"
I
x

0'6

!/q. • SHELL TS4

I'
TS5

0'4 0 TS6
TS7

0

0·2
A

Io •~x ..l--I...-J0 Ax....1 -,--,--,--,-I.........1 .........1 -..1..1-..1..'-..1..'-..1..1 .........1 --'---'

o 0·05 0'10 0'15
n= 2 MODE AMPLITUDE

t
FIG. 12. The effect of initial n = 2 imperfection on shells of high H/a ratio.



On the buckling behaviour of shallow spherical caps under a uniform pressure load 51

results obtained by Loo and Evan-Iwanowski (Fig. 3) in this region are not repeated in
the present work. The results shown in Fig. 10 for the effect of known imperfections on the
snapping loads of nominally identical shells show a similar trend to that found theoretically
by Budiansky [3]. The comparison is not strictly valid however as Budiansky used a slightly
different axisymmetric imperfection shape. An interesting observation is that the imperfect
shells all tend to approximately the same post snapping load as the deformations become
large (Fig. 9).

The theoretical results obtained for the snapping pressures and bifurcation pressures
of the n = 1 and n = 2 asymmetrical modes with varying A. (Fig. 4) show agreement with
the work of Budiansky [3] and Huang [5]. The discrepancy between their results and the
present one for A. > 6 is probably due to the limited number of assumed forms taken to
represent the symmetrical and asymmetrical deformed shape of the shell in this region.
The results obtained for the post-bifurcation behaviour ofthe n = 1and n = 2asymmetrical
modes (Fig. 5) indicate they are both highly unstable; each equilibrium path exhibiting a
small forwards slope at the bifurcation point. This implies any practical shell will be
extremely sensitive to any initial imperfection in these modes. The result for the n = 2
mode is at variance with the present experimental results from shells of A. ~ 6 and Ria
= 0·083. All these shells exhibited a stable n = 2 mode (Fig. 11) and indeed initial imper­
fections in this mode seemed to increase the load at which final instability occurred (Fig. 12).
It is possible that the higher order modes (i.e. n = 3, 4, etc.) are also stable in shells of "large"
Ria ratio and the buckling loads obtained by Parmerter and Evan-Iwanowski/Loo
(Fig. 3) for shells with Ria ~ 0·1 support this idea. The shallower shells of Ria = 0·042 all
fell below the n = 2 bifurcation curve and seem to have behaved as the theory has pre­
dicted. However no n = 2 modes was detected, even with the present "rigid" apparatus,
which suggests that for these shells the n = 2 path exhibits a "backwards" slope at the
bifurcation point.

The fruitless theoretical search for a transition path joining the n = 2 to the n = 1
post-bifurcation path may mean that no such transitions are valid. If this is true the final
n = 1 mode observed in test shells by previous workers (and in the present case) must be
triggered by imperfections. It is clear from the present experiments that the n = 1 mode is
highly unstable, ("backwards" slope) and in consequence imperfections in this mode will
have a drastic effect on the final buckling load. However, it may be that higher order modes,
not considered here, may play some part in any possible coupling between the two modes
examined in the present work and hence the present negative theoretical result cannot be
taken as being conclusive.

CONCLUSIONS

It is clear from the experimental work on shells of A. < 5·5 that excellent agreement can
be obtained with the existing theory of Budiansky [3] provided care is taken in manu­
facturing and testing the shell specimens. Also, if the shells lie within the Reissner [llJ
shallowness limit the effect of the parameter Ria on the snapping loads of shells of similar A.
is small. Tests on shells of A. = 5 and having known size of initial imperfection show the
expected large decrease in overall load carrying capacity when quite small imperfections
are present and the change in snapping load with imperfection size shows a similar trend
to that found theoretically by Budiansky [3J.

The theoretical results obtained for the behaviour of the n = 1and n = 2 asymmetrical
modes show they are both unstable after the bifurcation point. This result is at variance
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with the present experimental results obtained from shells of A. ~ 6 and H/a = 0'083
which exhibited a stable n = 2 asymmetrical mode before finally buckling in the usual
single edge dimple configuration. Shells in this region having H/a = 0·042 seem to have
behaved as the theory has predicted. The difference in these two results would suggest that
the parameter H/a greatly effects the stability ofshells in this region and that the shallowness
limit must be set at much less than 1/6 (or 1/8) if correlation is to be obtained with shailow
shell theory. It is possible that the stability of the higher order asymmetrical modes may
also exhibit a dependence on the H/a parameter. The experimental results in [lOJ and [8J
support to this idea.

An analysis of the post-bifurcation behaviour of a non-shallow cap, in which the
geometry depends on both A. and H/a, is needed to finally clear up this point.

A theoretical investigation of the branching behaviour of the various asymmetrical
modes has been undertaken by J. R. Fitch at Harvard University and he has arrived at the
same qualitative results found here. (i.e. unstable n = 1 and n = 2 behaviour). From his
analysis, which was essentially more accurate than the one presented here, he also found a
"backwards" slope to the n = 2 bifurcation path (Private communication-May 1967).
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A6cTpaKT-AaIOTCH pe3YJlbTaThi Teopenl'l.eCKHX H 3KcnepHMeHTaJlbHblX HccJle,ll,osaHHll ynpyroll. yCTO­
A'iHBOCTH 3aw;eMJIeHHbIX nOJlOrHX C!PePH'l.ecKHx KpbIweK, nO,ll,BeplKeHHbIX O,ll,HOMepHoMy ,ll,aSJleHHIO.
06paw;aeTcH BHHMaHHe Ha reOMeTpH'l.ecKHA napaMeTp '\, ,ll,JlR KOToporo CnpaBe,ll,JlHBbI CHMMeTpH'l.ecKHe
H ABe nepBhIe aHTHcHHMeTpHlfecKHe cl>OPMbI ,ll,ecl>oPMauHH. AJIR cHMMeTpH'IecKoro cJlY'lali pe3YJlbTaTbI
Hp;eaJIbHO COrJlaCOBbiBalOTCR Ccyw;ecTBHTeJlbHOa TeopHell: HOMHHaJIbHO H,ll,eaJIbHblX 060JlO'leK H o60JlO'leK
C H3BecTHOll: BeJlH'IHHOA HenpaSHJlbHocTH. AJIH aHTHCHMMeTpHlfecKoro cJlY'l.all TeopeTH'l.ecKaR pa60Ta
OIIpeP;eJIHCT HeycToAlfHBOCTb p;ByX cl>OpM p;ecl>opMal.\HH BbIwe TOlfKH 6HcI>YPKaI.\HH, a TaKlKe oTcylcTBHe
nepexop;HoA JlHHHH MelKAY HHMH. TeM He MeHee, 3KcnepHMeHTaJlbHbIe pe3YJIbTaTbI p;alOT XpHTH'l.ecKylO
3aBHCHMOCTb MelKp;y oCTaTolfHoll: HarpY3KoA npH nOTepe yCTOll:'l.HBOCTU 060JIO'l.eK TaKoro lKe caMoro
rrapaMeTpa ,\ H POCT K OCHOBHOMy OTHoweHHU pap;Hyca. OKa3bIBaeTCH, 'ITO Ha'laJlbHbIe aHTHCHMMeTpH­
IfecKHe HerrpaBHJIbHOCTH HBJllIlOTCR BalKHbIMU.


